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Abstract
Seals are extremely useful devices to prevent fluid leakage. However, the exact mechanism of
roughness induced leakage is not well understood. We present a theory of the leak-rate of seals,
which is based on percolation theory and a recently developed contact mechanics theory. We
study both static and dynamic seals. We present molecular dynamics results which show that
when two elastic solids with randomly rough surfaces are squeezed together, as a function of
increasing magnification or decreasing squeezing pressure, a non-contact channel will percolate
when the (relative) projected contact area, A/A0, is of the order 0.4, in accordance with
percolation theory. We suggest a simple experiment which can be used to test the theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A seal is a device for closing a gap or making a joint fluid
tight [1]. Seals play a crucial role in many modern engineering
devices, and the failure of seals may result in catastrophic
events, such as the Challenger disaster. In spite of its apparent
simplicity, it is still not possible to theoretically predict the
leak-rate and (for dynamic seals) the friction forces [2] for
seals. The main problem is the influence of surface roughness
on the contact mechanics at the seal–substrate interface. Most
surfaces of engineering interest have surface roughness on a
wide range of length scales [3], e.g, from cm to nm, which will
influence the leak-rate and friction of seals, and accounting
for the whole range of surface roughness is impossible using
standard numerical methods, such as the finite element method.

In this paper we will analyze the role of surface roughness
on seals. We will use a recently developed contact mechanics
theory [4–9] to calculate the leak-rate of static seals. We
assume that purely elastic deformation occurs in the solids,
which is the case for rubber seals. For metal seals, strong
plastic deformation often occurs in the contact region.

The theory developed below is based on studying the
interface between the rubber and the hard countersurface
(usually a metal) at different magnifications ζ . At low
magnification the surfaces appear flat and the contact between
them appears to be complete (i.e., no leak channels can be
observed). However, when we increase the magnification we
observe surface roughness at the interface, and, in general,
non-contact regions. As the magnification increases, we will
observe more and more (short-wavelength) roughness, and the
(apparent) contact area A(ζ ) between the solids will decrease.
At high enough magnification, for ζ = ζc, a non-contact

rubber
fluid
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Figure 1. Rubber seal (schematic). The liquid on the left-hand side is
under the hydrostatic pressure Pa and the liquid to the right under the
pressure Pb (usually, Pb is the atmospheric pressure). The pressure
difference �P = Pa − Pb results in liquid flow at the interface
between the rubber seal and the rough substrate surface. The volume
of liquid flow per unit time is denoted by Q̇, and depends on the
squeezing pressure P0 acting on the rubber seal.

(percolation) channel will appear, through which fluid will
flow, from the high pressure side (pressure Pa) to the low
pressure side (pressure Pb), see figure 1. We denote the most
narrow passage between the two surfaces along the percolation
path as the critical constriction. When the magnification
increases further more percolation channels will be observed,
but these channels will have more narrow constrictions than
those for the first channel which appears at the percolation
threshold (ζ = ζc).

The picture described above for the leakage of seals has
already been presented by one of the present authors [3, 10].
However, recent developments in contact mechanics now
allow us to present a more accurate analysis of the leakage
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Figure 2. The rubber–countersurface apparent contact area is
rectangular Lx × L y . We ‘divide’ it into N = L y/Lx square areas
with side L = Lx and area A0 = L2.

process. In this paper we extend the theory of [10] and present
numerical results for the size of the critical constriction and for
the leak-rate.

In section 2 we describe the basic picture used to calculate
the leak-rate of static seals. The theory is based on a recently
developed contact mechanics model [5–9] that accurately takes
into account the elastic coupling between the contact regions
in the nominal rubber–substrate contact area. Earlier contact
mechanics models, such as the Greenwood–Williamson [11]
model or the model of Bush et al [12], neglect this elastic
coupling which results in highly incorrect relations between
the squeezing pressure and the interfacial separation. In
section 3 we present numerical results for the size of the
critical constriction and for the leak-rate. In section 4 we
present molecular dynamics results which illustrate how the
contact between the two solids changes as the magnification ζ

increases. We find that the percolation channel is formed when
ζ = ζc, where A(ζc)/A0 ≈ 0.4, in accordance with percolation
theory [13]. In section 5 we improve the theoretical picture of
how to understand static seals. In section 6 we compare the
theory with experimental data. In section 7 we present some
comments related to the non-uniform seal pressure distribution,
the role of adhesion and rubber viscoelasticity. In section 8
we study dynamical (linear reciprocal motion) seals at low
sliding velocities. In section 9 we suggest a simple experiment
to test the theory. Section 10 contains the summary and the
conclusion.

2. Theory

We first briefly review the basic picture on which our
calculations of the leak-rate are based [10]. Assume that
the nominal contact region between the rubber and the hard
countersurface is rectangular with area Lx × L y , see figure 2.
We assume a high pressure fluid region for x < 0 and a
low pressure region for x > Lx . We now divide the contact
region into squares with side Lx = L and area A0 = L2

(this assumes that N = L y/Lx is an integer, but this restriction
does not affect the final result). Now, let us study the contact
between the two solids within one of the squares as we change
the magnification ζ . We define ζ = L/λ, where λ is the
resolution. We study how the apparent contact area (projected
on the xy-plane), A(ζ ), between the two solids depends on
the magnification ζ . At the lowest magnification we cannot
observe any surface roughness, and the contact between the

Figure 3. An rubber block (dotted area) in adhesive contact with a
hard rough substrate (dashed area). The substrate has roughness on
many different length scales and the rubber makes partial contact
with the substrate on all length scales. When a contact area is studied
at low magnification it appears as if complete contact occurs, but
when the magnification is increased it is observed that in reality only
partial contact occurs.

ζ = 1 ζ = 5

ζ = 10 ζ = ζ c

L

critical
constriction

Figure 4. The contact region at different magnifications (schematic).
Note that at the point where the non-contact area (white area)
percolates A(ζc) ≈ 0.4A0, while there appears to be complete contact
between the surfaces at the lowest magnification ζ = 1: A(1) = A0.

solids appears to be complete i.e., A(1) = A0. As we
increase the magnification we will observe some interfacial
roughness, and the (apparent) contact area will decrease, see
figures 3 and 4. At high enough magnification, say ζ =
ζc, a percolating path of non-contact area will eventually be
observed, see figure 4. The most narrow constriction along the
percolation path has a lateral size λc = L/ζc and the surface
separation at this point is denoted by uc = u1(ζc) and is given
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by a recently developed contact mechanics theory (see below).
As we continue to increase the magnification we find more
percolating channels between the surfaces, but as these have
narrower constrictions than the first channel which appears at
ζ = ζc for the moment we will neglect their contribution to
the leak-rate (see also section 5). Thus, in this section we
will assume that the leak-rate is determined by the critical
constriction.

A first rough estimate of the leak-rate is obtained by
assuming that all the leakage occurs through the critical
percolation channel, and that the whole pressure drop �P =
Pa − Pb (where Pa and Pb is the pressure to the left and right
of the seal) occurs over the critical constriction (of width and
length λc ≈ L/ζc and height uc = u1(ζc)). Thus for an
incompressible Newtonian fluid, the volume flow per unit time
through the critical constriction will be

Q̇ = M�P, (1)

where

M = α
u3

1(ζc)

12η
, (2)

where η is the fluid viscosity. In deriving (1) we have assumed
laminar flow and that uc � λc, which is always satisfied in
practice. We have also assumed a no-slip boundary condition
on the solid walls. This assumption is not always satisfied
at the micro or nanoscale, but is likely to be a very good
approximation in the present case owing to surface roughness
which occurs at length scales shorter than the size of the critical
constriction. In (2) we have introduced a factor α which
depends on the exact shape of the critical constriction, but
which is expected to be of order unity. Since there are N =
L y/Lx square areas in the rubber–countersurface (apparent)
contact area, we get the total leak-rate

Q̇ = L y

Lx
M�P. (3)

To complete the theory we must calculate the separation
uc = u1(ζc) of the surfaces at the critical constriction. We
first determine the critical magnification ζc by assuming that
the apparent relative contact area at this point is given by site
percolation theory. Thus, the relative contact area A(ζ )/A0 ≈
1− pc, where pc is the so called site percolation threshold [13].
For infinite-sized systems pc ≈ 0.696 for a hexagonal lattice
and 0.593 for a square lattice [13]. For finite-sized systems the
percolation will, on average, occur for (slightly) smaller values
of p, and fluctuations in the percolation threshold will occur
between different realization of the same physical system. We
will address this problem again later (see section 4) but for now
we take pc ≈ 0.6 so that A(ζc)/A0 ≈ 0.4 will determine the
critical magnification ζ = ζc.

The (apparent) relative contact area A(ζ )/A0 at the
magnification ζ can be obtained using the contact mechanics
formalism developed elsewhere [4, 6–9], where the system
is studied at different magnifications ζ , see figure 3. We
have [4, 5]

A(ζ )

A0
= 1

(πG)1/2

∫ P0

0
dσ e−σ 2/4G = erf

(
P0

2G1/2

)

magnification ζ

elastic solid

rigid solid

ζ1

u(ζ)
_

Figure 5. An asperity contact region observed at the magnification ζ .
It appears that complete contact occurs in the asperity contact region,
but upon increasing the magnification it is observed that the solids
are separated by an average distance ū(ζ ).

where

G(ζ ) = π

4

(
E

1 − ν2

)2 ∫ ζq0

q0

dqq3C(q)

where the surface roughness power spectrum

C(q) = 1

(2π)2

∫
d2x〈h(x)h(0)〉e−iq·x

where 〈· · ·〉 stands for ensemble average. Here E and ν are the
Young’s elastic modulus and the Poisson ratio of the rubber.
The height profile h(x) of the rough surface can be measured
routinely today on all relevant length scales using optical and
stylus experiments.

We define u1(ζ ) to be the (average) height separating
the surfaces which appear to come into contact when the
magnification decreases from ζ to ζ − �ζ , where �ζ is a
small (infinitesimal) change in the magnification. u1(ζ ) is a
monotonically decreasing function of ζ , and can be calculated
from the average interfacial separation ū(ζ ) and A(ζ ) using
(see [9])

u1(ζ ) = ū(ζ ) + ū′(ζ )A(ζ )/A′(ζ ).

The quantity ū(ζ ) is the average separation between the
surfaces in the apparent contact regions observed at the
magnification ζ , see figure 5. It can be calculated
from [9]

ū(ζ ) = √
π

∫ q1

ζq0

dq q2C(q)w(q)

×
∫ ∞

p(ζ )

dp′ 1

p′
[
γ + 3(1 − γ )P2(q, p′, ζ )

]

× e−[w(q,ζ )p′/E∗]2
,
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Figure 6. The lateral size λc = λ(ζc) of the critical constriction of
the percolation channel, as a function of the applied normal (or
squeezing) pressure P0. Results are shown for self-affine fractal
surfaces with the Hurst exponent H = 0.8 (or fractal dimension
Df = 2.2), and for surfaces with the root-mean-square roughness
(rms) 1, 2, 4 and 6 μm.

where γ ≈ 0.4 and where

p(ζ ) = P0 A0/A(ζ )

and

w(q, ζ ) =
(

π

∫ q

ζq0

dq ′ q ′3C(q ′)
)−1/2

.

The function P(q, p, ζ ) is given by

P(q, p, ζ ) = 2√
π

∫ s(q,ζ )p

0
dx e−x2

,

where s(q, ζ ) = w(q, ζ )/E∗.
We study the contact between the solids at increasing

magnification. In an apparent contact area observed at
the magnification ζ , the substrate has a root-mean-square
roughness amplitude [4, 10]

h2
rms(ζ ) = 2π

∫ q1

ζq0

dq qC(q). (4)

When we study the apparent contact area at increasing
magnification, the contact pressure p(ζ ) will increase and the
surface roughness amplitude hrms(ζ ) will decrease. Thus, the
average separation ū(ζ ), between the surfaces in the (apparent)
contact regions observed at the magnification ζ , will decrease
with increasing magnification.

3. Numerical results

We now present numerical results to illustrate the theory
developed above. We assume a rubber block with a flat surface,
squeezed by a nominal pressure P0 against a hard solid with
a randomly rough surface which we assume to be a self-
affine fractal. Thus the surface roughness power spectrum for
q0 < q < q1:

C(q) = C0q−2(1+H )

-10

-9

-8

-7

-6

-5

0 0.2 0.4 0.6 0.8 1
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rms = 6 μm

4 μm

2 μm
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g 
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  (
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)
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Figure 7. The interfacial separation uc = u1(ζc) at the critical
constriction of the percolation channel, as a function of the applied
normal (or squeezing) pressure P0. Results are shown for self-affine
fractal surfaces with the Hurst exponent H = 0.8 (or fractal
dimension Df = 2.2), and for surfaces with the root-mean-square
roughness (rms) 1, 2, 4 and 6 μm.

where

C0 = H

π
〈h2〉 [

q−2H
0 − q−2H

1

]−1 ≈ H

π
〈h2〉q−2H

0

where q0 and q1 are the long-distance and short-distance cut-
off wavevectors, respectively.

The rubber has Young’s modulus E = 10 MPa (as is
typical for the low-frequency modulus of rubber used for seals)
and Poisson ratio ν = 0.5. The pressure difference in the
fluid between the two sides of the seal is assumed to be
�P = 0.01 MPa, but, as long as �P is small compared to
the pressure in the rubber–substrate nominal contact area, the
leak-rate for other sealed pressures can be obtained using direct
scaling (see equation (3)). If this condition is not satisfied,
i.e., if �P � P0, it is necessary to account for the fluid
pressure in solving the contact mechanics problem. This can
be done in an (approximate) mean-field type approach, by
assuming that the rubber–substrate contact area is determined
by the squeezing pressure P0 − pfluid(x), where pfluid(x) is the
average local fluid pressure in the nominal rubber–substrate
contact area. We assume that L y/Lx = 1, but the leak-rate for
other values of L y/Lx can be obtained using direct scaling (see
equation (3)). The fluid is assumed to be an incompressible
Newtonian fluid with viscosity η = 0.001 N s m−2. We will
study how the lateral size λc and the height uc of the critical
constriction depend on the fractal dimension Df = 3 − H and
on the root-mean-square roughness amplitude hrms of the rough
surface. We also present results for how the volume flow of
fluid through the seals depends on Df and hrms. The randomly
rough surfaces have cut-off wavevectors q0 = 1.0 × 104 m−1

and q1 = 7.8 × 109 m−1, and we vary the applied squeezing
pressure P0 from 0.05 to 1 MPa.

Let us first vary the rms roughness amplitude. In figure 6
we show the lateral size λc = λ(ζc) and in figure 7 the
height (interfacial separation) uc of the critical constriction,
as a function of the applied normal (or squeezing) pressure
P0. Results are shown for self-affine fractal surfaces with the

4
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Figure 8. The volume per unit time, Q̇, of fluid leaking through the
seals as a function of the applied normal (or squeezing) pressure P0.
Results are shown for self-affine fractal surfaces with the Hurst
exponent H = 0.8 (or fractal dimension Df = 2.2), and for surfaces
with the root-mean-square roughness (rms) 1, 2, 4 and 6 μm. The
fluid pressure difference between the two sides is �P = 0.01 MPa
and the fluid viscosity μ = 10−3 N s m−2 (water).
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Figure 9. The lateral size λc = λ(ζc) of the critical constriction of
the percolation channel, as a function of the applied normal (or
squeezing) pressure P0. Results are shown for self-affine fractal
surfaces with the root-mean-square roughness (rms) 2 μm and for the
Hurst exponent H = 0.9, 0.8, 0.7 and 0.6.

Hurst exponent H = 0.8 (or fractal dimension Df = 2.2), and
for surfaces with the root-mean-square roughness (rms) 1, 2, 4
and 6 μm. As expected, the size of the critical constriction
increases when the roughness increases. In figure 8 we show
the volume per unit time of fluid leaking through the seals
as a function of the applied normal (or squeezing) pressure
P0. Note the extremely strong decrease in Q̇ with increasing
squeezing pressure and also its strong dependence on the rms
roughness amplitude.

In figures 9–11 we show the analogous results when we
vary the Hurst exponent H = 0.9, 0.8, 0.7 and 0.6 for
hrms = 2 μm. Note that when H decreases for a fixed
hrms, the short-wavelength roughness increases while the long-
wavelength roughness is almost unchanged.

In figure 12 we show the interfacial separation u1(ζc) and
the rms roughness hrms(ζc) in the critical constriction, as a
function of the applied normal (or squeezing) pressure P0.
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Figure 10. The interfacial separation uc = u1(ζc) at the critical
constriction of the percolation channel, as a function of the applied
normal (or squeezing) pressure P0. Results are shown for self-affine
fractal surfaces with the root-mean-square roughness (rms) 2 μm and
for the Hurst exponents H = 0.9, 0.8, 0.7 and 0.6.
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Figure 11. The volume per unit time, Q̇, of fluid leaking through the
seal as a function of the applied normal (or squeezing) pressure P0.
Results are shown for self-affine fractal surfaces with the
root-mean-square roughness (rms) 2 μm and for the Hurst exponent
H = 0.9, 0.8, 0.7 and 0.6. The fluid pressure difference between the
two sides is �P = 0.01 MPa and the fluid viscosity
μ = 10−3 N s m−2 (water).

Results are shown for a self-affine fractal surface with the Hurst
exponent H = 0.8 (or fractal dimension Df = 2.2), and with
the root-mean-square roughness (rms) 6 μm. Note that the
difference between hrms(ζc) and u1(ζc) is relatively small. We
have found that this is the case also for the other parameters
used in the study above.

4. Molecular dynamics results

The multiscale molecular dynamics model has been described
in [14], but we briefly review it here. In what follows we denote
the lower solid as substrate, the upper solid as block. We
are concerned with the contact between a randomly rough and
rigid substrate, and an elastic block, without adhesion. We are
interested in surfaces with random roughness with wavevector
components in the finite range q1 > q > qL (see figure 13),
where qL = 2π/L, L being the lateral size of the system.

5



J. Phys.: Condens. Matter 20 (2008) 315011 B N J Persson and C Yang

-5

-6

-7

0 0.2 0.4 0.6 0.8 1
squeezing pressure (MPa)

rms ch      (ζ  ) 

cu  (ζ  )1

lo
g(

le
ng

th
) 

(m
)

Figure 12. The interfacial separation uc = u1(ζc) and the rms
roughness hrms(ζc) in the critical constriction of the percolation
channel, as a function of the applied normal (or squeezing) pressure
P0. Results are shown for self-affine fractal surfaces with the Hurst
exponent H = 0.8 (or fractal dimension Df = 2.2), and with the
root-mean-square roughness (rms) 6 μm.

In order to accurately study contact mechanics between elastic
solids, it is necessary to consider a solid block which extends
a distance ∼L in the direction normal to the nominal contact
area. This requires a huge number of atoms or dynamical
variables even for small systems. Therefore we developed
a multiscale molecular dynamics approach to study contact
mechanics to avoid this trouble [14]. The lateral size of the
system is L = 1040 Å. Lx = Nx a and L y = Nya, where
a = 2.6 Å is the lattice space of the block, Nx = Ny = 400
for the block1. The elastic modulus and Poisson ratio are
E = 77.2 GPa and ν = 0.42. The lattice space of the substrate
is b ≈ a/φ, where φ = (1+√

5)/2 is the golden mean, in order
to achieve (nearly) incommensurate structures at the interface.

For self-affine fractal surfaces, the power spectrum has
a power-law behavior C(q) ∼ q−2(H+1), where the Hurst
exponent H is related to the fractal dimension Df of the surface
via H = 3 − Df. For real surfaces this relation holds only for a
finite wavevector region q1 < q < q0, where q1 = 2π/b, q0 is
the roll-off wavevector q0 = 3qL (see figure 13). The randomly
rough surfaces have been generated as described in [3, 14] and
have root-mean-square roughness hrms = 10 Å and fractal
dimension Df = 2.2. The roll-off wavevector q0 = 3qL , where
qL = 2π/L and L = 1040 Å. In this section we define the
magnification ζ = q/qL .

The atoms at the interface between block and substrate
interact with repulsive potential U(r) = ε(r0/r)12, where r

1 The length scale in the MD simulations is, of course, very different from that
involved in most applications to seals. However, there is no natural length scale
in the elastic continuum description, and in numerical studies it is the grid-size
which introduces the relevant (shortest) length scale. Thus the ‘lattice constant’
in our MD simulations can also be interpreted as the grid-size in an elastic
continuum representation of our seal problem. If the grid-size is smaller than
the wavelength of any of the (relevant) surface roughness components, then the
result of our simulation can be reinterpreted as giving the contact mechanics
for macroscopic solids. Thus, our results are very general and valid also for
macroscopic systems. We also note that the contact mechanics only depends
on the ratio P0/E between the squeezing pressure and the elastic modulus,
and our MD simulation results are therefore unchanged if we simultaneously
reduce P0 and E to values typically in rubber applications (e.g., E ≈ 10 MPa
and P0 = 0.5 MPa).

lo
g 

C

log q
qL 3qL q1

Figure 13. Surface roughness power spectrum of a surface which is
self-affine fractal for q1 > q > 3qL . The slope log C–log q relation
for q > 3qL determines the fractal exponent of the surface. The
lateral size L of the surface determines the smallest wavevector
qL = 2π/L .

is the distance between a pair of atoms, r0 = 3.28 Å and
ε = 74.4 meV. In molecular dynamics simulations there is
no unique definition of contact (see [14]). Here we use the
critical distance dc to define contact. If the separation between
two atoms is smaller than dc it has been denoted as contact,
otherwise non-contact. Here dc = 4.36 Å.

Figure 14 shows the block–substrate contact regions at
different magnifications ζ = 1, 3, 6, 9, 12, 648. Note that
when the magnification is increased from 9 to 12, the non-
contact region percolates. The percolation occurs when the
normalized projected contact area A/A0 ≈ 0.4, in good
agreement with percolation theory [13].

5. Improved analytical description

In section 2 we assumed that all the fluid flow occurs
through a single constriction, which we refer to as the critical
constriction. In reality, fluid flow will also occur in other flow
channels even if they have more narrow constrictions. In this
section we will assume that there is a finite concentration of
critical or nearly critical constrictions, which correspond to
all constrictions appearing when the magnification changes in
some narrow interval around the critical value ζc, e.g., in such
a way that A(ζ )/A0 changes by, say, ±0.03. Since we are
very close to the percolation threshold, we will assume that the
size of all the (nearly critical) constrictions remains the same.
In a more accurate treatment one would instead introduce a
distribution of sizes of constrictions. In figure 15(a) the dots
correspond to the critical or nearly critical constrictions along
percolation channels (solid lines). One expects the (nearly
critical) constrictions to be nearly randomly distributed in the
apparent contact area, and that the channels, of which they are
part, have all possible directions as indicated by the lines in
figure 15(a). Here we will consider a simplified version of (a)
where the (nearly critical) constrictions form a more ordered
arrangement as in figure 15(b). In reality, the dots and the lines
should be (nearly) randomly distributed as in15(a), but this is
likely to have only minor effects on what follows.
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(b) ζ=3, A/A0=0.778

(c) ζ=6, A/A0=0.498 (d) ζ=9, A/A0=0.434

(e) ζ=12, A/A0=0.405 (f) ζ=648, A/A0=0.323

(a) ζ=1, A/A0=1

Figure 14. The contact regions at different magnifications
ζ = 1, 3, 6, 9, 12, 648, are shown in (a)–(f) respectively. The
pressure is p ≈ 4.1 GPa. When the magnification is increased from
9 to 12, the non-contact region percolates.

On average the fluid will only flow in the x-direction.
Thus, in a first approximation one may assume that no fluid
flows along the (transverse) channels pointing (mainly) in the
y-direction in figure 15(b). Let a be the (average) distance
between two nearby critical constrictions. Thus we expect
n = Lx/a constrictions along a percolation channel (in the
figure we have n = 3). If Q̇1 denotes the fluid volume per
unit time flowing along one percolation channel, then we must
have

Q̇1 = M(Pa − P1) = M(P1 − P2) = · · · = M(Pn − Pb). (5)

From (5) we get

Q̇1 = M

n
(Pa − Pb).

As expected, the amount of fluid flowing in the channel is
reduced when the number of constrictions increases. However,
there will be roughly L y/a percolation channels so the total

x

y

Lx

LyPa

Pb

1P

2P

0
0

critical
constriction

(b)

(a)

Figure 15. The solid lines denote non-contact channels and the dots
critical, or near critical, constrictions. In reality the constrictions and
channels are nearly randomly distributed as in (a) (see also
figure 14(e)) but in the model calculation we use the more ordered
structure shown in (b).

fluid flow will be

Q̇ = L y

Lx
M(Pa − Pb) (6)

which is identical to the result obtained in section 2. This
analysis is very rough, and a more detailed analysis will result
in some modifications of the leak-rate, but (6) should be very
useful as a first rough estimate of the leak-rate. Note that the
present treatment will result in a more gradual change in the
liquid pressure in the apparent contact region, from the initial
high pressure value Pa (entrance side) to the low pressure value
Pb (exit side).

6. Comparison with experiment

We have not found any results in the literature concerning leak-
rates of seals for well-characterized systems. However, we
have found some results which are in qualitative agreement
with our theory. For example, leak-rates observed for both
rubber and steel seals tend to decrease very fast (roughly
exponentially) with increasing contact force. Thus, in [15] the
leak-rate for a rubber seal decreased by 6 orders of magnitude
as the load increased by a factor of 10. A similar sharp
drop in the leak-rate with increasing contact force has been
observed for seals made from steel [16]. However, in the latter
case some plastic deformation is likely to occur in the contact
region. In both cases the nominal pressure may change less
than the change in the load, due to an increase in the nominal
contact area with increasing load. A detailed analysis of the
experimental data is not possible as the surface topography
was not studied in detail. In section 9 we suggest a simple
experiment which can be used to test the theory.

The present theory implies that most of the fluid leakage
occurs through the critical or nearly critical constrictions in

7
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Figure 16. Nominal contact pressure distribution P0(x) (curve bounding the dotted area) for (a) O-ring seal and (b) lip-seal. In (a) the curve
denoted by ‘approx’ is an approximation to the continuous Hertz-like curve.

the percolating channels at the interface between the two
solids. Since the constrictions are very small they can easily
be clogged up by dirt particles in the fluid. This results in leak-
rates which decrease with increasing time as the microscopic
gaps get clogged up. This has recently been observed for metal
seals [16]. In fact, by using specially prepared fluids with
immersed particles having a narrow distribution of particle
diameters, it should be possible to determine (approximately)
the size (or rather the height) of the critical constriction.

7. Comment on the role of non-uniform pressure,
rubber viscoelasticity and adhesion

In the study above we have assumed that the normal
(squeezing) pressure is constant in the nominal rubber–
countersurface contact region. In reality, this is (almost) never
the case. Thus, in rubber O-ring applications one expects a
pressure distribution which is Hertzian-like, as indicated in
figure 16(a). In (dynamical) rubber seals for linear reciprocal
motion, the pressure distribution is asymmetric, with a much
steeper increase in the pressure when going from the high
pressure (Pa) fluid side towards the center of the seal, as
compared to going from the low pressure (Pb) fluid side toward
the center of the seal, see figure 16(b). (The reason for this
asymmetry does not interest us here.) The theory developed
above can be applied approximately to these cases too. Thus
in case (a) (e.g., rubber O-ring seals) one may approximate
the actual Hertzian-like pressure profile with a sum of step
functions as indicated in figure 16(a). Since the seal-action is
so strongly dependent on the squeezing pressure (see figures 8
and 11), it is enough to include the central step region (with
width L) in the analysis. Since there is no unique way to
determine the width L there will be some (small) uncertainty
in the analysis, but this is not important in most practical cases.
Similarly, for the lip-seal (figure 16(b)) during the stationary
condition it is enough to include the region (width L) where
the normal pressure is maximal.

In the study above we have assumed that the rubber
behaves as a purely elastic solid. In reality, rubber-materials are
viscoelastic. One consequence of this is stress relaxation. For
example, after a rubber O-ring has been deformed to fit into the
‘cavity’ where it is placed, the stress exerted on the solid walls
will decrease with increasing time. Since rubber-materials
have very wide distribution of relaxation times, the stress can

continue to decrease even one year after installation. Thus,
after very long time the pressure in the rubber–countersurface
contact region may be so low that the seal fails (note: we
found earlier that the leak-rate depends extremely sensitively
on the normal pressure). Stress relaxation can be easily taken
into account approximately in the analysis above by using
an effective relaxation modulus Eeff(t) (where t is time)2,
obtained from the frequency dependent viscoelastic modulus
E(ω), which can be measured using standard methods.

Now let us comment on the role of adhesion in rubber
seals. We first note that if the fluid is an oil, the effective
adhesion between the rubber and the hard countersurface may
vanish, or nearly vanish, as observed in some experiments [17].
If the fluid is not an oil (e.g., water) some effective adhesive
interaction may remain. In particular, if the fluid is a
gas then the effective adhesion may be similar to that in
the normal atmosphere. However, even in this case the
adhesive interaction between the solids may have a negligible
influence on the leak-rate. The reason for this is that adhesion
operates mainly at very short length scales, corresponding
to high magnification ζ > ζad, while the leak-rate is
determined mainly by the contact mechanics at the point where
the first percolation channel appears, corresponding to the
magnification ζc. If ζc � ζad the adhesive interaction will have
a negligible influence on the leak-rate. We now illustrate this
with a numerical calculation using the theory of [7].

Figure 17 shows the relative contact area A(ζ )/A0 as
a function of the logarithm of the magnification ζ . Note
that at the magnification ζc, where the non-contact area first
percolates, the adhesional interaction has no influence on the
contact area. The adhesional interaction will manifest itself
only for ζ > ζad, where the adhesional interaction increases
the contact area as compared to the case without the adhesional
interaction included. The result in figure 17 is for a rubber
block in contact with a hard solid with a self-affine fractal
surface with the root-mean-square roughness hrms = 6 μm,

2 The simplest approximation is to replace E with the relaxation modulus
E(t), but this is a very crude approximation even though it has been used in
the literature (e.g., in [21]). In [10] one of the present authors has studied
this problem in detail, and shown how the contact mechanics can be correctly
described for viscoelastic solids by replacing E with Eeff(t) defined by

1

Eeff(t)
= 1

2π

∫ ∞

−∞
dω

1 − exp(iωT )

−iω

exp(−iωt)

E(ω)
,

where E(ω) is the frequency dependent viscoelastic modulus and T an
arbitrary time with t < T .

8
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Figure 17. The relative contact area A(ζ )/A0 as a function of the
logarithm of the magnification ζ . Note that at the magnification ζc,
where the non-contact area first percolates, the adhesional interaction
has no influence on the contact area. The adhesional interaction will
manifest itself only for ζ > ζad, where the adhesional interaction
increases the contact area as compared to the case without the
adhesional interaction included. For a rubber block in contact with a
hard solid with a self-affine fractal surface with the root-mean-square
roughness hrms = 6 μm, the Hurst exponent H = 0.8. The squeezing
pressure P0 = 0.2 MPa and, for the curve ‘with adhesion’, with the
interfacial binding energy per unit area �γ = 0.05 J m−2.

the Hurst exponent H = 0.8, and for the squeezing pressure
P0 = 0.2 MPa.

Finally we note that if there is very little fluid at the
interface strong capillary adhesion may occur between the
surfaces. This is known to be of great importance in, e.g., the
context of rubber wiper blades. This topic has been discussed
in detail in [18, 19].

8. Dynamical seals

The theory presented above is for static seals. Here we give
some comments related to dynamical seals. We will estimate
the leak-rate for linear reciprocal seals at very low sliding
velocity. We assume that the roughness occurs mainly on the
rubber surface and we treat the hard countersurface as perfectly
flat. Thus, as the rubber slides along the countersurface
the contact mechanics does not change, e.g., the percolation
channel will be time independent in the reference frame
moving with the rubber. We consider the system in the
reference frame where the rubber is stationary while the hard
countersurface moves from left to right with the velocity v0.
The rubber is assumed to be below the countersurface, see
figure 18. The high pressure fluid region (pressure Pa) occupies
x < 0 while the low pressure region (pressure Pb) occupies
x > L.

We assume a Newtonian fluid and stationary and laminar
flow. The basic equations for the fluid flow are

∇ p = η∇2v, ∇ · v = 0,

where p(x) and v(x) are the fluid pressure and the fluid flow
velocity, respectively. We now consider the fluid flows in
the percolation channel. Let s be the length-coordinate along

z

x

L

aP bP

0v

rubber

Figure 18. A rubber block with a rough surface in contact with a
hard smooth countersurface (upper block) which moves relative to
the rubber block with the velocity v0.

the percolation channel. Since in general the λ(s) � u(s),
where λ(s) is the width and u(s) the height of the channel
at the point s along the channel, we can write the velocity as
v(x) = ŝv(s, z) where

v(s, z) ≈ 1

2η

dp

ds
z(z − u(s)) + v0 x̂ · ŝ

z

u(s)
.

The volume flow per unit time through any cross-section of
the channel is assumed to be the same, and equal to Q̇ which
gives

Q̇ = λ(s)
∫ u(s)

0
dz v(s)

= λ(s)

(
−u3(s)

12η

dp

ds
+ v0 x̂ · ŝ

u(s)

2

)

or
dp

ds
= 6η

u2(s)
v0 x̂ · ŝ − 12ηQ̇

λ(s)u3(s)
.

Integrating this equation gives

p(la) = Pa +
∫ la

0
ds

[
6η

u2(s)
v0 x̂ · ŝ − 12ηQ̇

λ(s)u3(s)

]
(7)

where la is the length of the percolation channel. Let P̃(u)

be the probability to find the surfaces separated by a height u
along the percolation channel. Note that λ(s) can also (at least
locally) be considered as a function of u, which we denote by
λ(u) for simplicity. Thus we can write (7) as

p(la) = Pa +6Laηv0

∫ ∞

uc

du
P̃(u)

u2
−12laηQ̇

∫ ∞

uc

du
P̃(u)

λ(u)u3

(8)
where La is the length of the percolation path projected on the
x-axis. In [9] we have shown how it is possible to calculate
the distribution P̄u of heights u between two surfaces in elastic
contact. We will now assume that (note: u > uc)

P̃(u) ≈ P̄u∫ ∞
uc

du′ P̄u′
.

Let us write (8) as

p(la) = P ′
a = Pa + Bav0 − Ca Q̇ (9)

9
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where

Ba = 6Laη

∫ ∞

uc

du
P̃(u)

u2
(10)

and

Ca = 12laη

∫ ∞

uc

du
P̃(u)

λ(u)u3
. (11)

Similarly, one gets3

p(lb) = P ′
b = Pb − Bbv0 − Cb Q̇. (12)

Thus in this case (1) takes the form

Q̇ = M(P ′
a − P ′

b)

= M(Pa − Pb) + M(Ba + Bb)v0 − M(Ca − Cb)Q̇

or

Q̇ = M
�P + (Ba + Bb)v0

1 − M(Ca − Cb)
. (13)

The factor M(Ca − Cb) in the denominator in this
expression is independent of v0 and we will assume that it is
negligible compared to unity and neglect it. One interesting
application of (13) is to wiper blades. Here �P = 0 so that
(13) takes the form

Q̇ = M(Ba + Bb)v0. (14)

Substituting (2) and (10) (and a similar expression for Bb)
in (14) gives

Q̇ = L yu3
cv0

α

2

∫ ∞

uc

du
P̃(u)

u2
(15)

where we have included the extra factor L y/Lx to take into
account the number of square seal units. During the time t the
leak-volume is Q̇t . We define the average thickness d of the
leak-film as d = Q̇t/(L yv0t). From (15) we get

d = βuc (16)

β = α

2

∫ ∞

uc

du u2
c

P̃(u)

u2
. (17)

We have calculated the integral I in β for some typical cases4,
and found that I ≈ 0.1–0.2 so we expect β ≈ 0.1.

In the treatment above we have assumed that the contact
between the rubber and the hard countersurface does not
depend on the pressure in the fluid, which is a good

3 We assume that no cavitation occurs at the exit of the critical constriction.
Cavitation may occur if the local pressure at the exit of the critical constriction
is negative, but in this paper we assume a sufficiently low sliding velocity v0

that this is not the case. If cavitation occurs p(lb) ≈ 0, or, more accurately,
p(lb) is equal or close to the vapor pressure of the fluid or of gases dissolved
in the fluid. We note that the transition from boundary (or mixed lubrication)
to hydrodynamic lubrication probably involves cavitation at the exit of many
narrow constrictions, since otherwise the total load supported by the fluid
film would be very small. It would be very interesting to study this problem
theoretically, since the transition from boundary lubrication to hydrodynamic
lubrication is not well understood.
4 We did two calculations: for a self-affine fractal surface with the rms
roughness of hrms = 2 μm and the squeezing pressure P0 = 0.18 MPa we
got B ≈ 0.11 (and uc ≈ 0.1 μm and λc ≈ 16 μm) and for hrms = 4 μm and
P0 = 0.2 MPa we got B ≈ 0.21 (and uc ≈ 1 μm and λc ≈ 109 μm).

approximation as long as the fluid pressure p(x) � P0.
However, as the sliding velocity increases, the fluid pressure
in some regions at the interface will increase, which will
tend to increase the separation between the two surfaces.
At very high sliding velocity, hydrodynamic lubrication will
prevail and the surfaces are completely separated by a thin
fluid film. However, even at much lower sliding velocity the
hydrodynamic pressure buildup may strongly increase the leak-
rate. In particular, the pressure at the critical constriction will
tend to increase the separation between the surfaces and hence
increase the leak-rate. We will not study this effect here but
just estimate when this effect becomes important. Let pc be the
pressure at the critical constriction. If pc acts over the area λ2

c
it will locally increase the separation between the surfaces by
an amount5 �u ≈ λc pc/E . Thus, the pressure at the critical
constriction must be much smaller than Euc/λc in order for the
pressure induced effect to be negligible. Note that

pc ≈ 6Lηv0

∫ ∞

uc

du
P̃(u)

u2
(18)

so the present study is limited to sliding velocities

v0 � Eu3
c

6Lηλc

(∫ ∞

uc

du u2
c

P̃(u)

u2

)−1

≈ Eu3
c

Lηλc
(19)

where we have used that the integral typically is of order
∼0.15. Thus, for example, in a wiper blade application [20],
after some use the rubber blades typically develop (because of
wear) a surface roughness with an rms amplitude of several
micrometer. If the rms roughness is 2 μm (and the Hurst
exponent H = 0.8), the nominal pressure ∼0.2 MPa, and if
we assume that E ≈ 10 MPa we get from figures 7 and 6
uc ≈ 0.1 μm and λc ≈ 10 μm. If L ≈ 0.1 mm and (for water)
η ≈ 10−3 Pa s we get that the slip velocity must be at most
∼1 cm s−1 in order for (17) to be valid. According to (16) the
(average) film thickness of the water layer would be of order
0.01 μm.

9. A new experiment

Very few studies of leak-rates of seals with well-characterized
surfaces have been published. Here we would like to suggest
a very simple experiment which could be used to test the
theory presented in section 2. In figure 19 we show a set-
up for measuring the leak-rate of seals. A glass (or PMMA)
cylinder with a rubber ring (with rectangular cross-section)
glued to one end is squeezed against a hard substrate with
well-defined surface roughness. The cylinder is filled with a
fluid, e.g., water, and the leak-rate of the fluid at the rubber–
countersurface is detected by the change in the height of the

5 The fluid pressure along the percolation channel increases towards the
critical constriction. Thus, the elastic deformation of the rubber at the critical
constriction is determined not just by the pressure at the constriction but also
by the pressure acting on the rubber along the percolation path. If one assumes
a straight percolation path and that the pressure along the percolation path
p(x) = pcx/L then one can easily show that �u ≈ ln(L/λc)λc pc/E but
the additionally logarithmic factor is never very large and does not change our
qualitative conclusion.
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Figure 19. A simple experimental set-up for measuring the leak-rate
of seals. A glass (or PMMA) cylinder with a rubber ring glued to one
end is squeezed against a hard substrate with well-defined surface
roughness. The cylinder is filled with a fluid, e.g., water, and the
leak-rate of the fluid at the rubber–countersurface is detected by the
change in the height of the fluid in the cylinder. In this case the
pressure difference �P = Pa − Pb = ρgH , where g is the
gravitation constant, ρ the fluid density and H the height of the fluid
column. With H ≈ 1 m we get typically �P ≈ 0.01 MPa.

fluid in the cylinder. In this case the pressure difference
�P = Pa − Pb = ρgH , where g is the gravitation constant, ρ

the fluid density and H the height of the fluid column. With
H ≈ 1 m we get typically �P ≈ 0.01 MPa. With the
diameter of the glass cylinder of order a few cm, the condition
P0 � �P (which is necessary in order to be able to neglect
the influence on the contact mechanics from the fluid pressure
at the rubber–countersurface) is satisfied already for loads
(at the upper surface of the cylinder) of the order of kg.

10. Summary and conclusion

Seals are extremely useful devices to prevent fluid leakage.
However, the exact mechanism of roughness induced leakage
is not well understood. We have presented a theory of the
leak-rate of seals, which is based on percolation theory and a
recently developed contact mechanics theory. We have studied
both static and dynamic seals. We have presented numerical
results for the leak-rate Q̇, and for the lateral size λc and the
height uc of the critical constriction. We assumed self-affine
fractal surfaces and presented results for how Q̇, λc and uc

depend on the root-mean-square roughness amplitude and the
fractal dimension Df = 3−H (where H is the Hurst exponent),
and on the pressure P0 with which the rubber is squeezed
against the rough countersurface.

We have also presented molecular dynamics results which
show that when two elastic solids with randomly rough
surfaces are squeezed together, as a function of increasing
magnification or decreasing squeezing pressure, a non-contact
channel will percolate when the relative projected contact area,
A/A0, is of the order of 0.4, in accordance with percolation
theory. Finally, we have suggested a simple experiment which
can be used to test the theory.

The theory we have presented in this paper is very rough,
but we believe that it captures the most important physics, and
that the approach presented can be improved and extended in
various ways.
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